The synergistic anticancer effects of curcumin in combination with breast cancer chemotherapy drugs
PDF

Keywords

Curcumin
breast cancer
chemotherapy
mechanisms
outcomes

How to Cite

The synergistic anticancer effects of curcumin in combination with breast cancer chemotherapy drugs. (2025). Life Sciences, Medicine and Biomedicine, 9(1). https://doi.org/10.28916/lsmb.9.1.2025.173

Abstract

Breast cancer has been steadily increasing in recent years, becoming a worldwide concern. Recent advancements in drug discovery and drug therapy have improved the survival rates of breast cancer patients. However, the long-term application of conventional chemotherapy drugs causes chemoresistance, and high dosage leads to adverse toxicity effects. At this point, curcumin, which exerts multiple beneficial effects, could be a potential novel agent in breast cancer treatment. Recent studies have found out that the combination of curcumin with chemotherapy drugs is effective in resensitising cancer cells towards chemotherapy drugs as well as reducing the chemotherapy dosage. Moreover, in vitro, and in vivo studies on different breast cancer cell lines as well as human clinical trials have shown the synergistic potential of curcumin in anticancer activities. Hence, this review summarises the synergistic anticancer effects of curcumin in combination with conventional chemotherapy drugs. This review also provides critical insights into the cellular and molecular effects of curcumin in combination with chemotherapy, particularly in relation to their modulation of key signalling pathways. Given curcumin’s poor availability, recent advances in nanoformulations have shown promise in enhancing its therapeutic potential. Therefore, this review also highlights the nano-formulated curcumin in combination with nanopackaged chemotherapy drugs, laying the groundwork for future research. Finally, this review analyses the research gap and discusses the future prospects of breast cancer treatment. In short, the findings presented in this review provide remarkable insights into the mechanisms underlying novel curcumin-based combination therapies, with the hope of achieving significant improvements in breast cancer treatment in the near future.

PDF

References

Abdeahad, H., Saeedi, N., Bahrami, A., Al-Asady, A. M., Mansoori, S., Avan, A., Khazaei, M., Ghorbani, E., Ryzhikov, M., & Seyed, M. H. (2024) ‘Therapeutic potency of curcumin on radiodermatitis: A systematic review’, Avicenna Journal of Phytomedicine, 14(3), 297-304.

https://doi.org/10.22038/AJP.2023.23175

Agostinetto, E., Curigliano, G., & Piccart, M. (2024) ‘Emerging treatments in HER2-positive advanced breast cancer: Keep raising the bar’, Cell Reports Medicine, 5(6), 101575.

https://doi.org/10.1016/j.xcrm.2024.101575

Ameyar, M., Wisniewska, M., & Weitzman, J. B. (2003) ‘A role for AP-1 in apoptosis: the case for and against’, Biochimie, 85(8), 747-752.

https://doi.org/10.1016/j.biochi.2003.09.006.

Arcaro, A. & Guerreiro, A. S. (2007) ‘The Phosphoinositide 3-Kinase Pathway in Human Cancer: Genetic Alterations and Therapeutic Implications’, Current Genomics, 8(5), 271-306.

https://doi.org/10.2174/138920207782446160

Asudas, E., Ngai, S. C., Ling, S-K., & Fang, C-M. (2025) ‘Therapeutic Advances in Breast Cancer: Clinacanthus nutans as a Source of Bioactive Compounds and Drug Combinations’, Current Pharmacology Reports, 11, 35.

https://doi.org/10.1007/s40495-025-00414-1

Bachmeier, B. E., Mohrenz, I. V., Mirisola, V., Schleicher, E., Romeo, F., Höhneke, C., Jochun, M., Nerlich, A. G., & Pfeffer, U. (2008) ‘Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB’, Carcinogenesis, 29(4), 779-789.

https://doi.org/10.1093/carcin/bgm248

Banerjee, S., Singh, S. K., Chowdhury, I., Lillard, J. W., & Singh, R. (2017) ‘Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer.’, Frontiers in bioscience (Elite edition), 9(2), 235–245.

https://doi.org/10.2741/e798

Banik, U., Parasuraman, S., Adhikary, A. K., & Othman, N. H. (2017) ‘Curcumin: the spicy modulator of breast carcinogenesis’, Journal of Experimental & Clinical Cancer Research, 36(1), 98.

https://doi.org/10.1186/s13046-017-0566-5

Bayet-Robert, M., Kwiatowski, F., Leheurteur, M., Gachon, F., Planchat, E., Abrial, C., Mouret-Reynier, M.-A., Durando, X., Barthomeuf, C., & Chollet, P. (2010) ‘Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer’, Cancer Biology & Therapy, 9(1), 8–14.

https://doi.org/10.4161/cbt.9.1.10392

Borghesi, J., Caceres, S., Mario, L. C., Alonso-Diez, A., Silveira Rabelo, A. C., Illera, M. J., Silvan, G., Miglino, M. A., Favaron, P. O., Carreira, A. C. O., & Illera, J. C. (2020) ‘Effects of doxorubicin associated with amniotic membrane stem cells in the treatment of canine inflammatory breast carcinoma (IPC-366) cells’, BMC Veterinary Research, 16(1), 353.

https://doi.org/10.1186/s12917-020-02576-0

Burguin, A., Diorio, C., & Durocher, F. (2021) ‘Breast Cancer Treatments: Updates and New Challenges’, Journal of Personalized Medicine, 11(8), 808.

https://doi.org/10.3390/jpm11080808

Cheang, M. C. U., Voduc, D., Bajdik, C., Leung, S., McKinney, S., Chia, S. K., Perou, C. M., & Nielsen, T. O. (2008) ‘Basal-Like Breast Cancer Defined by Five Biomarkers Has Superior Prognostic Value than Triple-Negative Phenotype’, Clinical Cancer Research, 14(5), 1368-1376.

https://doi.org/10.1158/1078-0432.CCR-07-1658

Chen, C-C., Sureshbadul, M., Chen, H-W., Lin, Y-S., Lee, J-Y., Hong, Q-S., Yang, Y-C., & Yu, S-L. (2013) ‘Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer’, Evidence-Based Complementary and Alternative Medicine, 1, 541695.

https://doi.org/10.1155/2013/541695

Chen, W.-C. ., Lai, Y.-A., Lin, Y.-C., Ma, J.-W., Huang, L.-F., Yang, N.-S., Ho, C.-T., Kuo, S.-C., & Way, T.-D. (2013) ‘Curcumin Suppresses Doxorubicin-Induced Epithelial–Mesenchymal Transition via the Inhibition of TGF-β and PI3K/AKT Signaling Pathways in Triple-Negative Breast Cancer Cells’, Journal of Agricultural and Food Chemistry, 61(48), 11817–11824.

https://doi.org/10.1021/jf404092f

Cheng, Z., Li, M., Dey, R., & Chen, Y. (2021) ‘Nanomaterials for cancer therapy: current progress and perspectives’, Journal of Hematology & Oncology, 14(1), 85.

https://doi.org/10.1186/s13045-021-01096-0

Christowitz, C., Davis, T., Isaacs, A., van Niekerk, G., Hattingh, S., & Engelbrecht, A.-M. (2019) ‘Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model’, BMC Cancer, 19(1), 757.

https://doi.org/10.1186/s12885-019-5939-z

ClinicalTrials.gov. (2012) Curcumin for the Prevention of Radiation-induced Dermatitis in Breast Cancer Patients.

https://clinicaltrials.gov/study/NCT01042938

ClinicalTrials.gov. (2017) Prophylactic Topical Agents in Reducing Radiation-Induced Dermatitis in Patients With Non-inflammatory Breast Cancer (Curcumin-II).

https://clinicaltrials.gov/study/NCT02556632

ClinicalTrials.gov. (2019) Phase II Study of Curcumin vs Placebo for Chemotherapy-Treated Breast Cancer Patients Undergoing Radiotherapy. Accessed 10 Feb 2022.

https://www.clinicaltrials.gov/ct2/show/NCT01740323?term=curcumin&cond=Breast+Cancer&phase=01&draw=2&rank=4

ClinicalTrials.gov. (2021) A "Window Trial" on Curcumin for Invasive Breast Cancer Primary Tumors. Accessed 18 Feb 2022.

https://www.clinicaltrials.gov/ct2/show/NCT03980509?term=curcumin&cond=Breast+Cancer&phase=0&draw=2&rank=1

Curtin, N. J., & Szabo, C. (2020) ‘Poly(ADP-ribose) polymerase inhibition: past, present and future’, Nature Reviews Drug Discovery, 19, 711-736.

https://doi.org/10.1038/s41573-020-0076-6

Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., & Shi, B. (2015) ‘Breast cancer intrinsic subtype classification, clinical use and future trends’, American Journal of Cancer Research, 5(10), 2929-2943.

https://pmc.ncbi.nlm.nih.gov/articles/PMC4656721/

Dai, X., Cheng, H., Bai, Z., & Li, J. (2017) ‘Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping’, Journal of Cancer, 8(16), 3131-3141.

https://doi.org/10.7150/jca.18457.

Dass, S. A., Tan, K. L., Rajan, R. S., Mokhtar, N. F., Adzmi, E. R. M., Rahman, W. F. W. A. R., Din, T. A. D. A-A. T., & Balakrishnan, V. (2021) ‘Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities’, Medicina, 57(1), 62.

https://doi.org/10.3390/medicina57010062

Deng, Y., Verron, E., & Rohanizadeh, R. (2016) ‘Molecular Mechanisms of Anti-metastatic Activity of Curcumin’, Anticancer Research, 36(11), 5639–5648.

https://doi.org/10.21873/anticanres.11147

Dong, G., Li, Y-H., Guo, J-S., Lin, Q-Q., Deng, M-Y., Xue, W-H., Li, X-Y., & Meng, F-H. (2023) ‘Discovery of novel thymidylate synthase (TS) inhibitors that influence cancer angiogenesis and metabolic reprogramming in NSCLC cells’, European Journal of Medicinal Chemistry, 258, 115600.

https://doi.org/10.1016/j.ejmech.2023.115600

Ebner, H.L., Blatzer, M., Nawaz, M., & Krumschnabel, G. (2007) ‘Activation and nuclear translocation of ERK in response to ligand-dependent and -independent stimuli in liver and gill cells from rainbow trout’, Journal of Experimental Biology, 210(6), 1036–1045.

https://doi.org/10.1242/jeb.02719

El-Azab, M., Hishe, H., Moustafa, Y., & El-Awady, E.-S. (2011) ‘Anti-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice’, European Journal of Pharmacology, 652(1–3), 7–14.

https://doi.org/10.1016/j.ejphar.2010.11.008

Engeland, K. (2022) ‘Cell cycle regulation: p53-p21-RB signaling’, Cell Death & Differentiation, 29(5), 946–960.

https://doi.org/10.1038/s41418-022-00988-z

Esmaealzadeh, N., Miri, M. S., Mavaddat, H., Peyrovinasab, A., Zargar, S. G., Kabiri, S. S., Razavi, S.M., & Abdolghaffari, A. H. (2024) ‘The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms’, Inflammopharmacology, 32, 2125-2151.

https://doi.org/10.1007/s10787-024-01492-1

Fehr, A. R., Singh, S.A., Kerr, C.M., Mukai, S., Higashi, H. & Aikawa, M. (2020) ‘The impact of PARPs and ADP-ribosylation on inflammation and host–pathogen interactions’, Genes & Development, 34(5-6), 241-359.

https://doi.org/10.1101/gad.334425.119

Ganjali, S., Sahebkar, A., Mahdipour, E., Jamialahmadi, K., Torabi, S., Akhlaghi, S., Ferns, G., Parizadeh, S. M. R., & Ghayour-Mobarhan, M. (2014) ‘Investigation of the Effects of Curcumin on Serum Cytokines in Obese Individuals: A Randomized Controlled Trial’, The Scientific World Journal, 2014, 1–6.

https://doi.org/10.1155/2014/898361

Gao, F.F., LV, J-W., Fan, R., Li, Q., Zhang, Z., & Wei, L. (2016) ‘Tamoxifen induces hepatotoxicity and changes to hepatocyte morphology at the early stage of endocrinotherapy in mice’, Biomedical Reports, 4(1), 102–106.

https://doi.org/10.3892/br.2015.536

Gera, M., Sharma, N., Ghosh, M., Huynh, D. L., Lee, S. J., Min, T., Kwon, T., & Jeong, D. K. (2017) ‘Nanoformulations of curcumin: an emerging paradigm for improved remedial application’, Oncotarget, 8(39), 66680–66698.

https://doi.org/10.18632/oncotarget.19164

Giordano, A., & Tommonaro, G. (2019) ‘Curcumin and Cancer’, Nutrients. 11(10), 2376.

https://doi.org/10.3390/nu11102376

Gogada, R., Amadori, M., Zhang, H., Jones, A., Verone, A., Pitarresi, J., Jandhyam, S., Prabhu, V., Black, J. D., & Chandra, D. (2011) ‘Curcumin induces Apaf-1-dependent, p21-mediated caspase activation and apoptosis’, Cell Cycle, 10(23), 4128–4137.

https://doi.org/10.4161/cc.10.23.18292

Golmohammadi, M., Zamanian, M. Y., Al-Ani, A. M., Jabbar, T. L., Kareem, A.K., Aghaei, Z. H., Tahernia, H., Hjazi, A., Jissir, S. A., & Hakimizadeh, E. (2024) ‘Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review’, Animal Models and Experimental Medicine, 7(6), 853-867.

https://doi.org/10.1002/ame2.12491

Gote, V., Nookala, A. R., Bolla, P. K., & Pal, D. (2021) ‘Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue’, International Journal of Molecular Sciences, 22(9), 4673.

https://doi.org/10.3390/ijms22094673

Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., & Hu, L. (2020) ‘ERK/MAPK signalling pathway and tumorigenesis (Review)’, Experimental and Therapeutic Medicine.

https://doi.org/10.3892/etm.2020.8454

Hajka, D., Budziak, B., Pietras, L., Duda, P., McCubrey, J. A., & Gizak, A. (2021) ‘GSK3 as a Regulator of Cytoskeleton Architecture: Consequences for Health and Disease’, Cells. 10(8), 2092.

https://doi.org/10.3390/cells10082092

Hanahan, D., & Weinberg, R. A. (2011) ‘Hallmarks of cancer: the next generation’, Cell, 144(5), pp. 646-74.

https://doi.org/10.1016/j.cell.2011.02.013

Han, W., Meißner, E.-M., Neunteibl, S., Günther, M., Kahnt, J., Dolga, A., Xie, C., Plesnila, N., Zhu, C., Blomgren, K., & Culmsee, C. (2023) ‘Dying transplanted neural stem cells mediate survival bystander effects in the injured brain’, Cell Death & Disease, 14(3), 173.

https://doi.org/10.1038/s41419-023-05698-z

Haritha, N. H., Nawab, A., Vijayakurup, V., Anto, N. P., Liju, V. B., Alex, V. V., Amrutha, A. N., Aiswarya, S. U., Swetha, M., Vinod, B. S., Sundaram, S., Guijarro, M. V., Herlevich, T., Krishna, A., Nestory, N. K., Bava, S. V., Sadasivan, C., Zajac-Kaye, M., & Anto, R. J. (2021) ‘Targeting Thymidylate Synthase Enhances the Chemosensitivity of Triple-Negative Breast Cancer Towards 5-FU-Based Combinatorial Therapy’, Frontiers in Oncology, 11.

https://doi.org/10.3389/fonc.2021.656804

He, Y., Sun, M. M., Zhang, G. G., Yang, J., Chen, K. S., Xu, W. W., & Li, B. (2021) ‘Targeting PI3K/Akt signal transduction for cancer therapy’, Signal Transduction and Targeted Therapy, 6(1), 425.

https://doi.org/10.1038/s41392-021-00828-5

Heneghan, C., Goldacre, B., & Mahtani, K.R. (2017) ‘Why clinical trial outcomes fail to translate into benefits for patients’, Trials, 18(1), 122.

https://doi.org/10.1186/s13063-017-1870-2

Hewlings, S., & Kalman, D. (2017) ‘Curcumin: A Review of Its Effects on Human Health’, Foods, 6(10), 92.

https://doi.org/10.3390/foods6100092

Hill, D. P., Harper, A., Malcolm, J., McAndrews, M. S., Mockus, S. M., Patterson, S. E., Reynolds, T., Baker, E. J., Bult, C. J., Chesler, E. J., & Blake, J. A. (2019) ‘Cisplatin-resistant triple-negative breast cancer subtypes: multiple mechanisms of resistance’, BMC Cancer, 19(1), 1039.

https://doi.org/10.1186/s12885-019-6278-9

Hindorff, L. A., Bonham, V. L., Brody, L. C., Ginoza, M. E. C., Hutter, C. M., Manolio, T. A., & Green, E. D. (2018) ‘Prioritizing diversity in human genomics research’, Nature Reviews Genetics, 19(3), 175–185.

https://doi.org/10.1038/nrg.2017.89

Hsu, K. Y., Ho, C. T., & Pan, M. H. (2023) ‘The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies’, Journal of Food and Drug Analysis, 31(2), 194-211.

https://doi.org/10.38212/2224-6614.3454

Huang, J., Zhang, L., Wan, D., Zhou, L., Zheng, S., Lin, S., & Qiao, Y. (2021) ‘Extracellular matrix and its therapeutic potential for cancer treatment’, Signal Transduction and Targeted Therapy, 6(1), 153.

https://doi.org/10.1038/s41392-021-00544-0

Huang, M., Lu, J-J., & Ding, J. (2021) ‘Natural Products in Cancer Therapy: Past, Present and Future’, Natural Products and Bioprospecting, 11, 5-13.

https://doi.org/10.1007/s13659-020-00293-7

Imran, M., Saleem, S., Chaudhuri, A., Ali, J., & Baboota, S. (2020) ‘Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer’, Journal of Drug Delivery Science and Technology, 60, 101959.

https://doi.org/10.1016/j.jddst.2020.101959

Jabczyk, M., Nowak, J., Hudzik, B., & Zubelewicz-Szkodzińska, B. (2021) ‘Curcumin in Metabolic Health and Disease’, Nutrients., 13(12), 4440.

https://doi.org/10.3390/nu13124440

Jaganathan, S. K., Mondhe, D., Wani, Z. A., Pal, H. C., & Mandal, M. (2010) ‘Effect of Honey and Eugenol on Ehrlich Ascites and Solid Carcinoma’, Journal of Biomedicine and Biotechnology, 2010, 1–5.

https://doi.org/10.1155/2010/989163

Jain, K., & Basu, A. (2014) ‘The Multifunctional Protein Kinase C-ε in Cancer Development and Progression’, Cancers, 6(2), 860-878.

https://doi.org/10.3390/cancers6020860

Jain, S., Jain, R., Das, M., Agrawal, A. K., Thanki, K., & Kushwah, V. (2014) ‘Combinatorial bio-conjugation of gemcitabine and curcumin enables dual drug delivery with synergistic anticancer efficacy and reduced toxicity’, RSC Advances, 4(55), 29193–29201.

https://doi.org/10.1039/C4RA04237A

Jiang, B., Liu, F., Liu, Z., Zhang, T., & Hua, D. (2016) ‘B7-H3 increases thymidylate synthase expression via the PI3k-Akt pathway’, Tumor Biology, 37, 9465-9472.

https://doi.org/10.1007/s13277-015-4740-0

Juric, V., O’Sullivan, C., Stefanutti, E., Kovalenko, M., Greenstein, A., Barry-Hamilton, V., Mikaelian, I., Degenhardt, J., Yue, P., Smith, V., & Mikels-Vigdal, A. (2018) ‘MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors’, PLOS ONE, 13(11), e0207255.

https://doi.org/10.1371/journal.pone.0207255

Kang, H. J., Lee, S. H., Price, J. E., & Kim, L. S. (2009) ‘Curcumin Suppresses the Paclitaxel-Induced Nuclear Factor-κB in Breast Cancer Cells and Potentiates the Growth Inhibitory Effect of Paclitaxel in a Breast Cancer Nude Mice Model’, The Breast Journal, 15(3), pp. 223–229.

https://doi.org/10.1111/j.1524-4741.2009.00709.x

Konat-Bąska, K., Matkowski, R., Błaszczyk, J., Błaszczyk, D., Staszek-Szewczyk, U., Piłat-Norkowska, N., & Maciejczyk, A. (2020) ‘Does Breast Cancer Increasingly Affect Younger Women?’, International Journal of Environmental Research and Public Health, 17(13), p. 4884.

https://doi.org/10.3390/ijerph17134884

Kong, W. Y., Ngai, S. C., Goh, B-H., Lee, L-H., Htar, T-T., & Chuah, L-H. (2021) ‘Is Curcumin the Answer to Future Chemotherapy Cocktail?’, Molecules, 26(14), 4329.

https://doi.org/10.3390/molecules26144329

Kooti, W., Servatyari, K., Behzadifar, M., Asadi-Samani, M., Sadeghi, F., Nouri, B., & Zare Marzouni, H. (2017) ‘Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study’, Journal of Evidence-Based Complementary & Alternative Medicine, 22(4), 982–995.

https://doi.org/10.1177/2156587217696927

Korbecki, J., Barczak, K., Gutowska, I., Chlubek, D., & Baranowska-Bosiacka, I. (2022) ‘CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space’, International Journal of Molecular Sciences, 23(2), 792.

https://doi.org/10.3390/ijms23020792

Kraby, M. R., Opdahl, S., Russnes, H. G., & Bofin, A. M. (2019) ‘Microvessel density in breast cancer: the impact of field area on prognostic informativeness’, Journal of Clinical Pathology, 72(4), 304–310.

https://doi.org/10.1136/jclinpath-2018-205536

Kumar, P., Barua, C. C., Sulakhiya, K., & Sharma, R. K. (2017) ‘Curcumin Ameliorates Cisplatin-Induced Nephrotoxicity and Potentiates Its Anticancer Activity in SD Rats: Potential Role of Curcumin in Breast Cancer Chemotherapy’, Frontiers in Pharmacology, 8.

https://doi.org/10.3389/fphar.2017.00132

Lam, S. W., Jimenez, C. R., and Boven, E. (2014) ‘Breast cancer classification by proteomic technologies: Current state of knowledge’, Cancer Treatment Reviews, 40(1), 129-138.

https://doi.org/10.1016/j.ctrv.2013.06.006

Larasati, Y. A., Yoneda-Kato, N., Nakamae, I., Yokoyama, T., Meiyanto, E., & Kato, J. (2018) ‘Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth’, Scientific Reports, 8(1), 2039.

https://doi.org/10.1038/s41598-018-20179-6

Li, H., Zhong, C., Wang, Q., Chen, W., & Yuan, Y. (2019) ‘Curcumin is an APE1 redox inhibitor and exhibits an antiviral activity against KSHV replication and pathogenesis’, Antiviral Research, 167, 98-103.

https://doi.org/10.1016/j.antiviral.2019.04.011

Liu, T., Zhang, L., Joo, D., & Sun, S-C. (2017) ‘NF-κB signaling in inflammation’, Signal Transduction and Targeted Therapy, 2, 17023.

https://doi.org/10.1038/sigtrans.2017.23

Liu, Z., Huang, P., Law, S., Tian, H., Leung, W., & Xu, C.(2018) ‘Preventive Effect of Curcumin Against Chemotherapy-Induced Side-Effects’, Frontiers in Pharmacology, 9.

https://doi.org/10.3389/fphar.2018.01374

Lee, S. E., Park, H. R., Jeon, S., Han, D., & Park, Y. S. (2020) ‘Curcumin Attenuates Acrolein-induced COX-2 Expression and Prostaglandin Production in Human Umbilical Vein Endothelial Cells’, Journal of Lipid and Atherosclerosis, 9(1), 184-194.

https://doi.org/10.12997/jla.2020.9.1.184

Lopresti, A. L. (2018) ‘The Problem of Curcumin and Its Bioavailability: Could Its Gastrointestinal Influence Contribute to Its Overall Health-Enhancing Effects?’, Advances in Nutrition, 9(1), 41–50.

https://doi.org/10.1093/advances/nmx011

Lynce, F., & Nunes, R. (2021) ‘Role of Platinums in Triple-Negative Breast Cancer’, Current Oncology Reports, 23(5), 50.

https://doi.org/10.1007/s11912-021-01041-x

Mansouri, K., Rasoulpoor, S., Daneshkhah, A., Abolfathi, S., Salari, N., Mohammadi, M., Rasoulpoor, S., & Shabani, S. (2020) ‘Clinical effects of curcumin in enhancing cancer therapy: A systematic review’, BMC Cancer, 20(1), 791.

https://doi.org/10.1186/s12885-020-07256-8

Morales, J., Li, L., Fattah, F. J., Dong, Y., Bey, E. A., Patel, M., Gao, J., & Boothman, D. A. (2016) ‘Review of Poly (ADP-ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases’, Critical Reviews in Eukaryotic Gene Expression, 24(1), 15–28.

https://doi.org/10.1615/CritRevEukaryotGeneExpr.2013006875

Motevalli, S. M., Eltahan, A. S., Liu, L., Magrini, A., Rosato, N., Guo, W., Bottini, M., & Liang, X.-J. (2019) ‘Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells’, Biophysics Reports, 5(1), 19–30.

https://doi.org/10.1007/s41048-018-0079-6

Mukhopadhyay, A., Banerjee, S., Stafford, L. J., Xia, C., Liu, M., & Aggarwal, B. B. (2002) ‘Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation’, Oncogene, 21, 8852-8861.

https://doi.org/10.1038/sj.onc.1206048

Na, T. Y., Schecterson, L., Mendonsa, A. M., & Gumbiner, B. M. (2020) ‘The functional activity of E-cadherin controls tumor cell metastasis at multiple steps’, Proceedings of the National Academy of Sciences, 117(11), 5931–5937.

https://doi.org/10.1073/pnas.1918167117

Newton, E. E., Mueller, L. E., Treadwell, S. M., Morris, C. A., & Machado, H. L. (2022) ‘Molecular Targets of Triple-Negative Breast Cancer: Where Do We Stand?’, Cancers (Basel)., 14(3), 482.

https://doi.org/10.3390/cancers14030482

Ngai, S. C. (2020) ‘Curcumin Sensitizes Cancers Towards TRAIL-induced Apoptosis via Extrinsic and Intrinsic Apoptotic Pathways’, Current Drug Targets, 21(9), 849–854.

https://doi.org/10.2174/1389450121666200302124426

Nguyen, N., Nguyen, N., Tran, N., Le, P., Nguyen, T., Nguyen, N., Bach, L., Doan, V., Tran, H., Le, V., & Tran, N. (2018) ‘Synergic Activity Against MCF-7 Breast Cancer Cell Growth of Nanocurcumin-Encapsulated and Cisplatin-Complexed Nanogels’, Molecules, 23(12), 3347.

https://doi.org/10.3390/molecules23123347

Patel, P. B., Thakkar, V. R., & Patel, J. S. (2015) ‘Cellular Effect of Curcumin and Citral Combination on Breast Cancer Cells: Induction of Apoptosis and Cell Cycle Arrest’, Journal of Breast Cancer, 18(3), 225.

https://doi.org/10.4048/jbc.2015.18.3.225

Peña‐Blanco, A. & García‐Sáez, A. J. (2018) ‘Bax, Bak and beyond — mitochondrial performance in apoptosis’, The FEBS Journal, 285(3), 416–431.

https://doi.org/10.1111/febs.14186

Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., & Xu, R. (2021) ‘Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures’, Drug Design Development and Therapy, 15, 4503-4525.

https://doi.org/10.2147/DDDT.S327378

Pillai, S. K. K., Tay, A., Nair, S., & Leong C-O. (2012) ‘Triple-negative breast cancer is associated with EGFR, CK5/6 and c-KIT expression in Malaysian women’, BMC Clinical Pathology, 12(18).

https://doi.org/10.1186/1472-6890-12-18

Ponce-Cusi, R. & Calaf, G. M. (2016) ‘Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation’, International Journal of Oncology, 48(2), 774–782.

https://doi.org/10.3892/ijo.2015.3298

Pont, M., Marqués, M., & Sorolla, A. (2024) ‘Latest Therapeutical Approaches for Triple-Negative Breast Cancer: From Preclinical to Clinical Research’, International Journal of Molecular Sciences, 25(24), 13518. https://doi.org/10.3390/ijms252413518

Olivera, A., Moore, T. W., Hu, F., Brown, A. P., Sun, A., Liotta, D. C., Synder, J. P., Yoon, Y., Shim, H., Marcus, A. I., Miller, A. H., & Pace, T. W. W. (2012) ‘Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties’, International Immunopharmacology, 12(2), 368-377.

https://doi.org/10.1016/j.intimp.2011.12.009

Qian, Q., Chen, W., Cao, Y., Cao, Q., Cui, Y., Li, Y., & Wu, J. (2019) ‘Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine’, Oxidative Medicine and Cellular Longevity, 2019, 1–23.

https://doi.org/10.1155/2019/9240426

Qie, S., & Diehl, J. A. (2016) ‘Cyclin D1, cancer progression, and opportunities in cancer treatment’, Journal of Molecular Medicine, 94, 1313-1326.

https://doi.org/10.1007/s00109-016-1475-3

Quispe-Soto, E. T. & Calaf, G. M. (2016) ‘Effect of curcumin and paclitaxel on breast carcinogenesis’, International Journal of Oncology, 49(6), 2569–2577.

https://doi.org/10.3892/ijo.2016.3741

Ramasamy, T. S., Ayob, A. Z., Myint, H. H. L., Thiagarajah, S., & Amini, F. (2015) ‘Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy’, Cancer Cell International, 15(1), 96.

https://doi.org/10.1186/s12935-015-0241-x

Rao, J., Xu, D-R., Zheng, F-M., Long, Z-J., Huang, S-S., Wu, X., Zhou, W-H., Huang, R-W., & Liu, Q. (2011) ‘Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells’, Journal of Translational Medicine, 9, 71.

https://doi.org/10.1186/1479-5876-9-71

Robinson, K., Lambiase, L., Li, J., Monteiro, C., & Schiff, M. (2003) ‘CASE REPORT: Fatal Cholestatic Liver Failure Associated with Gemcitabine Therapy’, Digestive Diseases and Sciences, 48(9), 1804–1808.

https://doi.org/10.1023/A:1025415616592

Roshan, M. K., Soltan, A., Soleimani, A., Kahkhaie, K. R., Afshari, A., & Soukhtanloo, M. (2019) ‘Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process’, Biochimie, 165, 229-234.

https://doi.org/10.1016/j.biochi.2019.08.003

Ryan, J. L., Heckler, C. E., Ling, M., Katz, A., Williams, J. P., Pentland, A. P., & Morrow, G. R. (2013) ‘Curcumin for Radiation Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Thirty Breast Cancer Patients’, Radiation Research, 180(1), 34-43.

https://doi.org/10.1667/RR3255.1

Saghatelyan, T., Tananyan, A., Janoyan, N., Tadevosyan, A., Petrosyan, H., Hovhannisyan, A., Hayrapetyan, L., Arustamyan, M., Arnhold, J., Rotmann, A.-R., Hovhannisyan, A., & Panossian, A. (2020) ‘Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial’, Phytomedicine, 70, 153218.

https://doi.org/10.1016/j.phymed.2020.153218

Salehi, M., Movahedpour, A., Tayarani, A., Shabaninejad, Z., Pourhanifeh, M. H., Mortezapour, E., Nickdasti, A., Mottaghi, R., Davoodabadi, A., Khan, H., Savardashtaki, A., & Mirzaei, H. (2020) ‘Therapeutic potentials of curcumin in the treatment of non‐small‐cell lung carcinoma’, Phytotherapy Research, 34(10), 2557–2576.

https://doi.org/10.1002/ptr.6704

San, S. H., Wong, S. H. M., Fang, C.-M., & Ngai, S. C. (2025) ‘Elucidating the potential of E-cadherin re-expression along with Trichostatin A and Zebularine in enhancing tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human breast adenocarcinoma cells’, Current Cancer Drug Targets, In press.

https://doi.org/10.2174/0115680096374361250610075556

San, S. H. & Ngai, S. C. (2024) ‘E-cadherin re-expression: its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition’, Gene, 909, 148293.

https://doi.org/10.1016/j.gene.2024.148293

Schmidt, M., Bremer, E., Hasenclever, D., Victor, A., Gehrmann, M., Steiner, E., Schiffer, I. B., Gebhardt, S., Lehr, H-A., Mahlke, M., Hermes, M., Mustea, M., Tanner, B., Koelbl, H., Pilch., H., & Hengstler, J. G. (2007) ‘Role of the progesterone receptor for paclitaxel resistance in primary breast cancer’, British Journal of Cancer, 96(2), 241–247.

https://doi.org/10.1038/sj.bjc.6603538

Sebastian, W., Forchette, L., Donoughe, K., Lun, Y., Verma, A., & Liu, T. (2023) ‘Genetics, Treatment, and New Technologies of Hormone Receptor-Positive Breast Cancer’, Cancers, 15(4), 1303.

https://doi.org/10.3390/cancers15041303

Sen, G. S., Mohanty, S., Hossain, D. M. S., Bhattacharyya, S., Banerjee, S., Chakraborty, J., Saha, S., Ray, P., Bhattacharjee, P., Mandal, D., Bhattacharya, A., Chattopadhyay, S., Das, T., & Sa, G. (2011) ‘Curcumin Enhances the Efficacy of Chemotherapy by Tailoring p65NFκB-p300 Cross-talk in Favor of p53-p300 in Breast Cancer’, Journal of Biological Chemistry, 286(49), 42232–42247.

https://doi.org/10.1074/jbc.M111.262295

Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018) ‘Controlled drug delivery vehicles for cancer treatment and their performance’, Signal Transduction and Targeted Therapy, 3(1), 7.

https://doi.org/10.1038/s41392-017-0004-3

Serasanambati, M., Chilakapati, S. R., Manikonda, P. K., Kanala, J. R., & Chilakapati, D. R. (2015) ‘Anticancer effects of brucine and gemcitabine combination in MCF-7 human breast cancer cells’, Natural Product Research, 29(5), 484–490.

https://doi.org/10.1080/14786419.2014.951932

Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. K. (2010) ‘Various types and management of breast cancer: an overview.’, Journal of advanced pharmaceutical technology & research, 1(2), 109–26.

https://pmc.ncbi.nlm.nih.gov/articles/PMC3255438/

Shimoyama, M. (2001) ‘Docetaxel induced cardiotoxicity’, Heart, 86(2), 219–219.

https://doi.org/10.1136/hrt.86.2.219

Sousa, G. F. de, Wlodarczyk, S. R. & Monteiro, G. (2014) ‘Carboplatin: molecular mechanisms of action associated with chemoresistance’, Brazilian Journal of Pharmaceutical Sciences, 50(4), 693–701.

https://doi.org/10.1590/S1984-82502014000400004

Sun, J., Yogarajah, T., Lee, R. C. H., Kaur, P., Inoue, M., Tan, Y. W., & Chu, J. J. H. (2020) ‘Drug repurposing of pyrimidine analogs as potent antiviral compounds against human enterovirus A71 infection with potential clinical applications’, Scientific Reports, 10(1), 8159.

https://doi.org/10.1038/s41598-020-65152-4

Tan, B. L. & Norhaizan, M. E. (2019) ‘Curcumin Combination Chemotherapy: The Implication and Efficacy in Cancer’, Molecules, 24(14), 2527.

https://doi.org/10.3390/molecules24142527

Taniguchi, K. & Karin, M. (2018) ‘NF-κB, inflammation, immunity and cancer: coming of age’, Nature Reviews Immunology, 18(5), 309–324.

https://doi.org/10.1038/nri.2017.142

Tian, X., Liu, Z., Niu, B., Zhang, J., Tan, T. K., Lee, S. R., Zhao, Y., Harris, D. C. H., & Zheng, G. (2011) ‘E-Cadherin/β-Catenin Complex and the Epithelial Barrier’, Journal of Biomedicine and Biotechnology, 567305.

https://doi.org/10.1155/2011/567305

Valero, V., Buzdar, A. U., McNeese, M., Singletary, E., & Hortobagyi, G. N. (2002) ‘Primary Chemotherapy in the Treatment of Breast Cancer: The University of Texas M. D. Anderson Cancer Center Experience’, Clinical Breast Cancer, 3, S63–S68.

https://doi.org/10.3816/CBC.2002.s.014

van Cruijsen, H., Giaccone, G. and Hoekman, K. (2005) ‘Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies’, International Journal of Cancer, 117(6), 883–888.

https://doi.org/10.1002/ijc.21479

Vinod, B. S., Antony, J., Nair, H. H., Puliyappadamba, V. T., Saikia, M., Shyam Narayanan, S., Bevin, A., & John Anto, R. (2013) ‘Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil’, Cell Death & Disease, 4(2), e505–e505.

https://doi.org/10.1038/cddis.2013.26

Waks, A. G., & Winer, E. P. (2019) ‘Breast Cancer Treatment’, JAMA, 321(3), 288.

https://doi.org/10.1001/jama.2018.19323

Wang, G., Duan, P., Wei, Z., & Liu, F. (2022) ‘Curcumin sensitizes carboplatin treatment in triple negative breast cancer through reactive oxygen species induced DNA repair pathway’, Molecular Biology Reports, 49(4), 3259–3270.

https://doi.org/10.1007/s11033-022-07162-1

Wang, H., Oo Khor, T., Shu, L., Su, Z.-Y., Fuentes, F., Lee, J.-H., & Tony Kong, A.-N. (2012) ‘Plants vs. Cancer: A Review on Natural Phytochemicals in Preventing and Treating Cancers and Their Druggability’, Anti-Cancer Agents in Medicinal Chemistry, 12(10), 1281–1305.

https://doi.org/10.2174/187152012803833026

Wang, H., Zhang, K., Liu, J., Yang, J., Tian, Y., Yang, C., Li, Y., Shao, M., Su, W., & Song, N. (2021) ‘Curcumin Regulates Cancer Progression: Focus on ncRNAs and Molecular Signaling Pathways’, Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.660712

Wang, K., Zhang, C., Bao, J., Jia, X., Liang, Y., Wang, X., Chen, M., Su, H., Li, P., Wan, J.-B., & He, C. (2016) ‘Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death’, Scientific Reports, 6(1), 26064.

https://doi.org/10.1038/srep26064

Wang, Z., Jia, R., Wang, L., Yang, Q., Hu, X., Fu, Q., Zhang, X., Li, W., & Ren, Y. (2022) ‘The Emerging Roles of Rad51 in Cancer and Its Potential as a Therapeutic Target’, Frontiers in Oncology, 12.

https://doi.org/10.3389/fonc.2022.935593

Wee, P., & Wang, Z. (2017) ‘Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways’, Cancers (Basel)., 9(5), 52.

https://doi.org/10.3390/cancers9050052

Wong, S.H.M., Kong, W.Y., Fang, C.-M., Loh, H.-S., Chuah, L.-H., Abdullah, S., & Ngai, S. C. (2019) ‘The TRAIL to cancer therapy: Hindrances and potential solutions’, Critical Reviews in Oncology/Hematology, 143, 81-94.

https://doi.org/10.1016/j.critrevonc.2019.08.008

Wong, K. E., Ngai, S. C., Chan, K-G., Lee, L-H., Goh, B-H., & Chuah, L-H. (2019) ‘Curcumin Nanoformulations for Colorectal Cancer: A Review’, Frontiers in Pharmacology, 10, 152.

https://doi.org/10.3389/fphar.2019.00152

World Health Organization (2021) WHO. Breast Cancer.

www.who.int/news-room/fact-sheets/detail/breast-cancer

Yamazaki, T., & Galluzzi, L. (2022) ‘BAX and BAK dynamics control mitochondrial DNA release during apoptosis’, Cell Death & Differentiation, 29, 1296-1298.

https://doi.org/10.1038/s41418-022-00985-2

Yang, J., Ning, J., Peng, L., & He, D. (2015) ‘Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer.’, International journal of clinical and experimental pathology, 8(8), 9272–8.

https://pmc.ncbi.nlm.nih.gov/articles/PMC4583908/

Yang, K., Guo, Y., Stacey, W. C., Harwalkar, J., Fretthold, J., Hitomi, M., & Stacey, D. W. (2006) ‘Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels’, BMC Cell Biology, 7:33.

https://doi.org/10.1186/1471-2121-7-33

Yao, J., Deng, K., Huang, J., Zeng, R., & Zuo, J. (2020) ‘Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer’, Frontiers in Pharmacology, 11, 592912.

https://doi.org/10.3389/fphar.2020.592912

Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J., & Shao, A. (2020) ‘Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance’, Frontiers in Molecular Biosciences, 7.

https://doi.org/10.3389/fmolb.2020.00193

Yeldag, G., Rice, A., & Del Río Hernández, A. (2018) ‘Chemoresistance and the Self-Maintaining Tumor Microenvironment’, Cancers, 10(12), 471.

https://doi.org/10.3390/cancers10120471

Younes, M., Mardirossian, R., Rizk, L., Fazlian, T., Khairallah, J. P., Sleiman, C., Naim, H. Y., & Sandra, R. (2022) ‘The Synergistic Effects of Curcumin and Chemotherapeutic Drugs in Inhibiting Metastatic, Invasive and Proliferative Pathways’, Plants, 11(16), 2137.

https://doi.org/10.3390/plants11162137

Zinatizadeh, M. R., Schock, B., Chalbatani, G. M., Zarandi, P. K., Jalali, S.A., & Miri, S. R. (2021) The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes & Diseases, 8(3), 287-297.

https://doi.org/10.1016/j.gendis.2020.06.005

Zoi, V., Galani, V., Lianos, G. D., Voulgaris, S., Kyritsis, A. P., & Alexiou, G. A. (2021) ‘The Role of Curcumin in Cancer Treatment’, Biomedicines. 9(9), 1086.

https://doi.org/10.3390/biomedicines9091086

Zoi, V. Kyritsis, A. P., Galani, V., Lazari, D., Sioka, C., Voulgaris, S., & Alexiou, G. A. (2024) ‘The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway’, Cancers, 16(8), 1554.

https://doi.org/10.3390/cancers16081554

Zou, J., Zhu, L., Jiang, X., Wang, Y., Wang, Y., Wang, X., & Chen, B. (2018) ‘Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression’, Oncotarget, 9(13), 11268–11278.

https://doi.org/10.18632/oncotarget.24109

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Ser Hui San , Siew Ching Ngai